
1 

 

 

Developing Context-Aware Computer Vision Models for 
Robust Data-Informed Condition Assessment of Bridges 
CTIPS-032 

Approved 9/15/2024 

University 

Utah State University 

Principal Investigators 

Mohsen Zaker Esteghamati, Ph.D. 

Assistant Professor 

Dept. of Civil and Environmental Engineering 

Phone: (435)797-1522 

Email: mohsen.zaker@usu.edu 

ORCID: 0000-0002-2144-2938 

Research Needs 

Visual inspection (Figure 1.a) at regular intervals has traditionally been the primary method for 

assessing the condition of physical assets to ensure they meet intended performance objectives 

[1]. However, this method is labor-intensive and costly, poses safety risks to inspectors, and 

might be prone to quality inconsistencies [2]. These challenges have motivated the 

implementation of new inspection technologies in transportation asset management, generating 

abundant asset data from various sources such as drones (Figure 1.b), satellite imagery, LiDAR, 

and point-cloud scanners [3,4]. As such, there is a pressing need to develop “automatable” and 

“reliable” methodologies to leverage this multi-faceted data for enhancing transportation asset 

condition and performance. 

Computer vision (CV)–based techniques provide an efficient approach to processing such data, 

enabling a high-level understanding of images and videos. CV models transform images (or 

videos) into pixel-wise mathematical functions to infer patterns, extract features, and provide a 

description of the image [5]. As shown in Figure 1.c, CV methods encompass a broad spectrum 

from low-level processing (e.g., noise reduction, contrast enhancement) to higher-level 

processing (feature extraction and object detection) [1]. Consequently, CV methods have been 

widely used in various infrastructure monitoring applications such as bridges, road networks, 

pavements, tunnels, and pavements. For example, algorithms have been proposed for surface 



defect detection of bridges. Zhang et al. developed a pixel-level crack detection for concrete 

surfaces based on U-net architecture, albeit the model was dependent on the quality of images 

[6]. Some studies use the local directional evidence method to improve crack detection for low-

contrast images [7]. Dung et al. used CV methods to detect gusset plates of steel bridge joists 

using convolutional neural networks (CNNs) [8]. 

Figure 1. (a) conventional inspection [3], (b) drone-based inspection [4], (c) comparison of CV 

approaches and methods [1]

Despite the advantages of CV-based 

techniques, significant challenges exist, 

including poor learning due to high data 

imbalance in training datasets (particularly for 

training sets focused on structural failure and 

damage) and excessive inference due to 

model complexity [9]. In addition, these 

models often ignore the “context” of the 

collected data, which results in limited 

applicability and generalizability. Here, 

context refers to any ancillary information 

(visual or non-visual) regarding a specific 

object of interest, or other objects present in 

the image [10]. Such contexts can play a 

critical role in CV models, as humans and 

machines process context differently. Figure 2 

shows different categories of context 

applicable to CV models [10]. Previous research suggests that augmenting CV algorithms with 

contexts increases accuracy, albeit the gain depends on the context type [11]. 
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Figure 2. Categories of context and their 

sub-categories (inspired by [10]) 

This research aims to develop robust context-aware CV-based models with low inference time 

that can provide practice-oriented insights on the condition of monitored assets. Examples of 
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such contexts include the co-occurrence of specific structural details of a bridge, which could 

help improve the accuracy of object detection tasks. Such context can also elevate regular CV 

tasks into inferences suitable for inspectors. Understanding the spatial relationship between the 

structural details of a bridge while identifying damage at a specific detail could be translated into 

scenarios for damage progression, and possible comprehensive remedies to prevent such 

mechanisms. As part of this project, various spatial and temporal contexts will be examined to 

understand the types of contexts that enhance the performance of CV models across different 

inspection tasks. In this initial phase of the study, the project will focus on steel bridges. 

However, the developed technology will be applicable to other transportation assets such as 

barriers, walls, and signs. These context-aware CV models will also create opportunities for 

integration with other technologies, such as geographic information systems or the Internet of 

Things, for holistic and integrated transportation asset management systems. 

Research Objectives 

This proposal aims to develop CV-based technologies to automate the inspection and monitoring 

of steel bridges. The developed models will be robust across different situations (e.g., lighting, 

orientation) and provide high-level, practice-oriented insight about assets. To this end, this 

project has three main objectives: 

1. Investigate the relationship between different spatial and temporal contexts and the 

performance of CV tasks for asset condition assessment. 

2. Develop a CV-based framework that can leverage the ancillary information of contexts to 

derive a more accurate and comprehensive description of the bridges condition. 

3. Compare the performance of context-aware and conventional CV models across different 

tasks (e.g., object detection). 

Research Methods 

The research plan consists of four main tasks as follows: 

Task 1. Literature review: An extensive literature review on applying CV in bridge condition 

assessment will be performed. This review aims to identify the state-of-the-art algorithms and 

methodologies for feature extraction, object detection, and image segmentation relevant to this 

domain of transportation data. 

Task 2. Data collection and processing: An initial dataset will be compiled based on open 

datasets (e.g., COCO-Bridge [12]). Through active collaboration with UDOT, context-rich asset 

data (e.g., different lighting conditions and backgrounds, various structural details in the same 

image) will be collected and integrated into this initial set. The PI also has a different UDOT 

project on benchmarking CVs, which facilitates data sharing and coordination. As part of this 

task, undergraduate students will help the graduate student with image annotations, including 

contextual information. Pre-processing data is critical for the success of the CV models, and a 

wide range of techniques, such as noise reduction or contrast enhancement and database 

augmentation, will be used. In particular, generative adversarial networks will be examined for 

data augmentation. 
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Task 3. CV Model development: A CV workflow will be developed to extract features from 

processed and annotated asset data, train CV models, and tune their hyperparameters. A wide 

array of algorithms (identified through Task 1) will be evaluated. In particular, recurrent (for 

temporal contexts) and graph (for spatial contexts) neural networks will be examined. 

Additionally, CNN-based architectures such as U-Net and YOLO will be examined. The transfer 

learning concept will be employed to improve model performance by leveraging pre-trained 

models. The model’s hyperparameters and architecture will be optimized to balance model 

complexity and accuracy. 

Task 4. Integrating contextual information: A key aspect of this research is to fuse contextual 

information into computer vision models. Therefore, a methodology will be developed to 

integrate contextual information into the CV framework, including the importance of structural 

details, picture visibility, and spatial relationships between different structural details. Attention 

mechanisms (self and spatial) will be explored to understand the most effective approach for 

leveraging contexts. In addition, context fusion at different stages of model development (as part 

of model features or in combination with the model output) will be studied. This task will also 

focus on understanding how different types of contexts (Figure 2) can affect CV models’ 

accuracy and insights. In particular, efforts will be directed at spatial contexts, such as spatial 

semantics and the relationship of different existing details across images of bridges. The context-

aware models will be designed to be “adaptive”, where updating techniques will be proposed to 

alter network features weight or threshold for defect detection with the supplemental information 

from contexts. 

Task 5. Evaluation: The performance of context-aware CV models will be evaluated using 

various accuracy metrics (e.g., scalar metrics for classification, receiver operating characteristic 

curve) on unseen data using cross-validation. These data will be sampled from the collected data 

in a way that does not share information (i.e., data leak) with the training and testing sets. In 

addition, the models will be benchmarked with existing literature and conventional CV models. 

Task 6. Final report: A final report will document the project outcome and methodology (Tasks 

1-5) to disseminate the methodology to the research community and other transportation 

stakeholders. 

Relevance to Strategic Goals 

This project aims to develop technology-based solutions to improve inspection quality through 

automation. As such, this project supports two USDOT strategic goals as follows: 

1. Transformation (Primary goal): The project develops transformative CV technologies 

that substantially advance the current state of automated inspections of transportation 

assets to extract better engineering-oriented inferences. Such a purpose-driven innovation 

will modernize current inspection methods and better meet future challenges. 

2. Safety (Secondary goal): The developed technology aids with improved and automated 

understanding of bridge performance issues that could pose safety risks to asset users, 

allowing for better maintenance and repair strategies that subsequently make these assets 

safer for all people. 
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3. Economic competitiveness: The proposed research provides a low-cost alternative to 

traditional inspection methods, providing economic competitiveness for the next 

generation of inspection methods. 

Educational Benefits 

One graduate student in the PI’s research group will conduct the proposed research. In addition, 

two undergraduate students will be involved in several parts of this project, particularly data 

collection and processing. The students will be mentored continuously and participate in national 

or regional conferences to present the project results. The PI will also attend USU summer 

programs to present the project outcome to engage and interest prospective high school students 

in pursuing a degree in civil engineering. 

Outputs through Technology Transfer 

The results of this research will develop an improved inspection technology, which will be 

published as one peer-reviewed research publication and conference presentation. All project 

data and models will also be published in open repositories (including USU digital commons) to 

allow other researchers, professionals, and practitioners to leverage the developed technology. 

The PI will seek opportunities to discuss the project outcome with UDOT (particularly the 

maintenance group) to seek opportunities for improving the current practices/methods on 

inspection methods that are not “boots on the ground”. 

Expected Outcomes and Impacts 

This research develops an innovative CV-based framework that emulates human perception by 

understanding context in visual data, and providing actionable insights for decision-making. The 

proposed framework will provide real-time, context-sensitive information regarding the 

structural integrity and operability of bridges, suitable for risk-informed maintenance strategies. 

In the short term, the project will advance the current state of automated inspection frameworks, 

ensuring accuracy and scalability. In the long term, such frameworks can be integrated into 

broader technological systems for integrated maintenance scheduling. Additionally, all the 

developed data and models will be made public, which can be used by other researchers and 

DOT personnel across Region 8. 

Work Plan 

The proposed research plan will be carried out over 24 months as shown in Table 1. 

Project Cost 

Total Project Costs: $196,083.61 

CTIPS Funds Requested: $ 98,041.61 

Matching Funds: $ 98,042.00 

Source of Matching Funds: Utah State University 
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Table 1 – Work plan 

Task Duration 

(months) 

Milestones  

(outcomes/technology transfer) 

1. Literature review 1.5  

2. Data collection and processing 4  

3. Model development 7 • Initial discussion with UDOT 

4. Integrating contextual information 7  

5. Evaluation 4 • Open data/models published in 

open repository 

• Submission of journal article 

6. Final report 1 • Technical report describing the 

developed technology and 

application 

• Conference presentation 
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