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Research Needs 

Nationwide, more than 300,000 bridges are annually inspected. For example, the Alaska 

Department of Transportation & Public Facilities (DOT&PF) is responsible for condition 

assessment of approximately 1,000 bridges in the state. Of which, approximately 44% are in 

good condition, 49% are in fair condition, and 7% are rated poor based on the 2021 National 

Bridge Inventory – NBI – data (Infobridge, 2024). Figure 1 shows a few samples of element-

level defects. Visual inspection is the common practice for inventory and routine inspections and 

is combined with other tools such as non-destructive evaluation (NDE) in other inspections for 

enhanced assessment. Inspectors usually complete both an NBI inspection (following the FHWA 

Recording and Coding Guide, 1995) and an element level inspection (based on the AASHTO 

Manual for Bridge Element Inspection, MBEI, 2019) per bridge. However, data collection and 

reporting are usually done manually, which are time consuming, error prone, and sometimes not 

consistent when repeated. For example, “deck damage mapping” requires manual detection and 

measurement of delaminated concrete, patch repairs, exposed reinforcing steel, and spalling. 

Such measurements often require traffic control for the safety of inspection crew. 
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Patches and Spalling

(a) Deck Surface – Photo Courtesy: AKDOT 

Steel Corrosion – Freckled Rust

(b) Steel Girders – Photo Courtesy: AKDOT 

Figure 1. Sample Defects for Different Bridge Elements 

Several studies have tried to expedite bridge inspection through emerging technologies such as 

robotics, drones, and artificial intelligence (AI). For example, La et al. (2013) developed a bridge 

deck inspection robot (Fig. 2a) equipped with several NDE techniques including GPS, laser 

scanner, ground penetrating radar, seismic sensors, electrical resistivity probes, and high-

resolution cameras. The cost of this robot in 2014 was about $1 million (Zhorov, 2014). Drones 

equipped with depth, lidar, and/or infrared cameras can be used to generate 3D models of bridges 

(e.g., Lattanzi and Miller, 2015; Khaloo et al., 2018; Chen et al., 2019; Popescu et al., 2019; 

Jalinoos et al., 2019; Liu et al., 2020). A 3D reconstructed model (Fig. 2b) provides a virtual 

reality platform to remotely inspect a bridge. Nevertheless, data processing and storing are the 

challenges of this method due to the size of data ranging from 10 to 100 GB per inspection 

(Azari, 2021). A recent attempt to develop a mobile deck condition assessment system is a study 

by Pashoutani et al. (2020) sponsored by the Nebraska DOT in which four NDE methods were 

compared: vertical electrical impedance (Fig. 2c), ground penetrating radar, acoustic scanning 

system, and computer vision (Fig. 2d). All NDE methods were found viable for bridge deck 

damage assessment (Fig. 2e) and the crack map of the deck using computer vision showed a 

reasonable agreement with the damage maps developed using other NDE methods (e.g., Fig. 2f). 

(a) Bridge Deck NDE Robot (La et al., 2013) (b) 3D Reconstructed Bridge (Wells and Lovelace, 2018) 



  

  

3 

(c) NDE Truck (Pashoutani et al., 2020) (d) Computer Vision Cameras (Pashoutani et al., 2020) 

(e) Comparison of Tree NDE Methods for a Bridge 

Deck (Pashoutani et al., 2020) 

(f) Comparison of Vertical Electrical Impedance Method 

with Computer Vision Cracking (Pashoutani et al., 2020) 

Figure 2. Emerging Bridge Inspection Technologies 

AI enabled computer vision techniques extract information from digital images, videos, and 

other media and interpret the information for the target applications such as object detection, 

instance segmentation, and prediction. The use of computer vision has been emphasized in 

various civil engineering applications such as detecting structural elements, damages, and 

reporting. For example, Zhu et al. (2010) used image stitching techniques to detect bridge 

columns to expedite inspection. Narazaki et al. (2020) used a convolutional neural network 

(CNN) designed for semantic segmentation to recognize bridge components from images. Zhu et 

al. (2011) used a percolation-based method to detect cracks in RC columns. German et al. (2012) 

used an image segmentation, template-matching, and morphological filtering to detect concrete 

spalling and rebars. Jahanshahi and Marsi (2012) proposed crack detection method using a 3D 

scene reconstruction, segmentation, and feature extraction. Torok et al. (2014) used a similar 

method and successfully detected cracks longer than 0.5 cm. Valença et al. (2017) combined 

image processing and point cloud data obtained from a terrestrial laser scanner to detect concrete 

cracks. Li and Zhao (2019) trained a deep CNN using 60,000 images to detect concrete cracks 

and developed a mobile application. Other recent studies (e.g., Dung and Anh, 2019; and Liu et 

al. 2020) used either deep CNN or U-Net (a CNN used for biomedical image segmentation) to 

detect concrete cracks and reported more than 90% precision. Furthermore, computer vision may 

be incorporated to expedite and automate post-event structural damage inspections. German et al. 

(2013) and later Paal et al. (2015) developed a framework to automatically detect RC building 

columns and their earthquake-caused damages, and to estimate the column damage state then the 

corresponding drift demand. Hoskere et al. (2018) utilized a pixel-wise deep CNN to detect 

concrete cracks, concrete spalling, exposed rebars, steel corrosion, steel fracture, steel fatigue 

cracks, and asphalt cracks. A 1695-image database cut from 339 photographs of 250 different 

structures was developed to label and train the network. The network was able to detect different 

types of damage, and the classification accuracy was more than 80%. Later, Hoskere et al. 

(2018) proposed a framework to generate vision-based condition-aware models to automate 
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building inspection by detecting building, windows/doors, debris, sky, greenery, cracks, spalling, 

and exposed rebar with 80% detection accuracy. 

(a) Damage State 2 (b) Damage State 3 (c) Damage State 4 (d) Damage State 5 

Figure 3. Computer Vision Tools for Post-Earthquake Assessment of RC Bridge Columns 

The research team of this proposal developed a framework and software that can evaluate the 

serviceability of RC bridge columns after strong earthquakes (Tazarv et al., 2022) in which 

computer vision tools were developed to detect the column earthquake-caused damages 

including cracking and crack angles, spalling, and exposed reinforcement (Fig. 3), to determine 

the column damage state, and to estimate the column displacement demand using damage-to-

drift relationships. The AI-based computer vision tool for cracking can detect RC bridge column 

cracks with precision and recall of 97% and 96%, respectively. Furthermore, the precision and 

recall of the tool to detect concrete spalling was respectively more than 94% and 88%. The 

precision and recall for the rebar detection were more than 91%. Overall, the computer vision 

tools developed by the research team detect different damages of RC bridge columns quickly and 

with reasonable accuracy. Inspection software exists for bridges. For example, the mobile 

version of AASHTOWare has been recently developed (https://www.mayvue.com/). Another 

example is InspectX (https://www.bridge-intel.com/), which is a multi-asset management tool 

including bridges. In this software, NBI and MBEI bridge inspection requirements have been 

digitized for quick documentation. A few companies claim that AI has been implemented in their 

inspection software to detect damage. Examples are Intelligent Inspection 

(https://www.screeningeagle.com/) and Inspect (https://strucinspect.com/). The annual cost of 

Inspect only for damage detection is $1,438 per user and is $4,300/user when 3D damage 

mapping is included. With higher storage, their annual cost can be as high as $45,000. 
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Research Objectives 

Computer vision can expediate bridge defect identification and quantification using images of 

bridge elements. The main goals of the present study are to: 

1. Develop practical computer vision tools that help inspectors with the defect detection and 

quantifications 

2. Develop tools that prepare inspection reports following NBI and MBEI requirements 

Research Methods 

To achieve the project objectives, a few bridge elements (e.g., concrete decks and steel girders) 

will be targeted for further investigation, inspection databases including images of the selected 

elements with/without damage will be compiled using different devices (iPhone and drones) and 

formats (RGB, lidar, and thermal), and computer vision tools will be developed for the selected 

elements to recognize the element defects, to quantify their damage state per NBI/MBEI, and to 

generate an inspection report following standard practices. The tools, which can be standalone or 

web-based software, will allow data acquisition using drones and mobile devices and will 

facilitate access, share, and reuse in future inspections. 

Relevance to Strategic Goals 

The expected outcomes of this project are directly related to the goals of “Transformation” and 

“Safety”. This project incorporates cutting-edge technologies such as smartphones equipped with 

high-resolution RGB and lidar cameras, drones equipped with combined RGB and thermal 

sensors, and neural networks for quick damage identification and quantification. These 

technologies are either new or have not been widely used in bridge engineering. Furthermore, 

these technologies help with quick identification and quantification of bridge damages enhancing 

their safety. 

Educational Benefits 

This project will provide valuable learning experience to two Graduate Research Assistants 

(GRAs) at the PhD level, one at Civil and another at Computer departments. The two students 

will perform the tasks of the project under the supervision of the PIs. The student will have the 

opportunity to work on this multidisciplinary research project. A regular weekly meeting will be 

scheduled between the PIs and the students to better train them and to consistently monitor the 

project progress. Funds have been allocated to involve undergraduate students in data collection 

(e.g., drone pilots) and AI software development. A priority will be given to underrepresented 

students especially women and native Americans. 

Outputs through Technology Transfer 

Three main deliverables of the project will be: (1) a final report, (2) a set of verified opensource 

computer vision codes for damage detection and quantification from images, and (3) user-

friendly software for routine inspection and reporting. A project webpage is designed under the 

PI’s website (https://sites.google.com/view/mostafa-tazarv) in which the sponsors, personnel, 

and project goals are presented and the key findings are frequently updated. The final report 

(through the PI and CTIPS websites) and the opensource codes (through GitHub) will be 

publicly available at no cost for use by other researchers, DOTs, and software developers. The 

https://sites.google.com/view/mostafa-tazarv
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research findings will be further disseminated through journal publications and conference 

presentations. Furthermore, a presentation will be prepared for the CTIPS webinar series, which 

will be recorded and posted in public domains (e.g., YouTube). The research team will prepare a 

user guide and will organize in-person training sessions for the DOT engineers. 

Expected Outcomes and Impacts 

The main outcome of this project is a practical AI-based software package that can automatically 

detect bridge element (e.g., concrete deck and steel girder) damages and quantify their damage 

state. The impact of the work is a substantial reduction of time and cost in bridge inspection for 

these elements and automation in inspection data processing and reporting. The products of this 

project are expected to have national impacts as more than 300,000 bridges are annually 

inspected. Furthermore, the use of smartphones and drones allows transportation agencies to 

collect different information quickly and safely using cutting-edge technologies. 

Work Plan 

To achieve the project goal, the proposed work is divided into seven tasks. 

1. Literature Review on Use of Computer Vision in Bridge Damage Detection (2 months)  

2. Selection of Bridge Elements for Computer Vision Condition Assessment (1 month) 

3. Inspection Data Collection for Bridge Elements (6 months) 

4. Definition of Damage Conditions Suitable for Computer Programming (1 month) 

5. Development of Computer Vision Condition Assessment Tools (10 months) 

6. Field Validation of Computer Vision Condition Assessment Tools (2 months) 

7. Project Deliverables including Final Report, Opensource Programs, and a User Guide 

(2 months) 

Project Cost 

Total Project Costs: $144,223 

CTIPS Funds Requested: $ 71,650 

Matching Funds: $ 72,573 

Source of Matching Funds: Alaska Department of Transportation & Public Facilities 
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